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Abstract. The recently developed macroscopic model of light-induced equilibrium of spin-
crossover solids is extended to the case of two equivalent sublattices coupled ‘antiferro-
magnetically’. To do this, we use an Ising-like model involving two coupling parameters of
opposite signs for the intra- and inter-sublattice interactions, previously introduced to describe the
two-step static spin transition, and we have adapted the macroscopic master equation describing
the time evolution of the system accordingly.

We mostly report on the quasi-static solutions of the system, under constant light irradiation
and for slow temperature variations. Light-induced thermal hysteresis loops are obtained and have
typical two-step shapes for suitable sets of parameter values. The model predicts, in analogy with
the static transition, a possible light-induced symmetry breaking between the structurally equivalent
sublattices. Kinetic effects are briefly described.

1. Introduction

Cooperative effects constitute the basic mechanism for the spin-crossover transition (see
e.g. [1, 2]). They induce instability in the thermodynamic competition between the two states
of the spin-crossover molecules: high spin (HS) and low spin (LS). Interactions tending to
favour the pair states made of identical spin states (HS–HS or LS–LS) are usually referred
to as ‘cooperative’ or ‘ferromagnetic-like’, while those tending to favour the pair states made
of different spin states (HS–LS or LS–HS) are usually referred to as ‘anti-cooperative’ or
‘antiferromagnetic-like’.

A further instability, also of cooperative origin, has been recently discovered [3, 4] and
analysed in the mean-field approach [4, 5] describing the properties of cooperative photo-
excitable molecular solids under permanent photoexcitation. It is worth noting that the mean-
field approach is well suited to the light-induced effects, since the random character of the
photoexcitation process hinders the onset of short-range correlations [6]. This light-induced
instability was introduced for the single-lattice case. We present here the extension of the
model to the case of a solid made of two equivalent sublattices.

Indeed, for some compounds the spin transition occurs in two steps. These compounds are
made of either bi-iron [7–9] or mono-iron [10–12] molecular units. In all cases the two-step
transition was modelled by introducing an ‘antiferromagnetic-like’ coupling, either between
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iron sites in di-iron molecular units [7, 8] or between sublattices [13, 14], or merely as a
short-range interaction [15]. All models provide a ‘plateau’ in the middle of the conversion
curve for the high-spin fraction, nhs(T ), and the low-spin fraction, nls(T ), because the
‘antiferromagnetic-like’ interaction stabilizes an intermediate HS–LS state. When both kinds
of interaction are strong, the system may exhibit thermal hysteresis with double loops.

We deal here with the two-sublattice approach, already treated analytically in the mean-
field approach. The static model [13] predicts a possible symmetry breaking in a finite-
temperature range associated with the ‘plateau’ of the conversion curve. The two sublattices,
structurally equivalent far from the transition, i.e. equivalent with respect to their energy gaps,
degeneracies, and interactions, become inequivalent on approaching the transition from either
side. Of course, the direct observation of such a symmetry breaking by structural methods is a
challenge which has not been met so far. The only study dealing with the structure of the two-
step transition complex [FeII(5-NO2-sal-N(1, 4, 7, 10))] [12] reports inequivalent sublattices
at all temperatures.

We present here a novel extension of the mean-field model of light-induced instability [4,5],
adapted to the case of the two-sublattice system. The features expected intuitively are two-
step light-induced hysteresis loops and light-induced symmetry breakings. These features, as
will be shown below, are effectively produced by the model.

2. The light-induced equilibrium (after [4])

The light-induced equilibrium in the system [FeII
xCo1−x(btr)2(NCS)2]·H2O was analysed [4],

as follows: at low temperature the ground state is LS which has a strong optical absorption in
the visible. On irradiating into a LS-state absorption band the molecules are switched to the
metastable HS state by the LIESST (light-induced excited spin-state trapping) effect [2, 16].
After photoexcitation, the photoinduced metastable state (HS) relaxes to the ground state
(LS). The relaxation curve shape is sigmoidal, which is a signature of a cooperative relaxation
process [17–20]: the energy barrier of the metastable state progressively decreases while
relaxation proceeds, leading to a ‘self-accelerated’ kinetics. Experimental data (above the
tunnelling process temperature range) are consistent with a thermal activation process involving
an energy barrier Ea(nhs) depending linearly on the high-spin fraction nhs . Accordingly, the
relaxation of the system is written as(

dnhs
dt

)
rel

= −nhskHL(T , nhs) = −nhsk∞ exp

(
−Ea(nhs)

kBT

)
(1)

where

Ea(nhs) = Ea(0) + anhs (2)

with Ea the activation energy of the molecule for the HS → LS relaxation and k∞ the high-
temperature limit of the relaxation rate. The ‘self-accelerator parameter’ a, of cooperative
origin, is obviously related to the self-acceleration factor α introduced by Hauser et al [17] in
the following form:

kHL(T , nhs) = kHL(T , 0) exp(−αnhs) (3)

where

a = αkBT . (4)

It is worth noting that a is by definition temperature independent, while α, which is the
measured quantity, is observed to be temperature dependent. The above relation between a
and α is of course restricted to the thermally activated relaxation regime. It has been verified
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by all investigations made so far [2, 4, 17–20], above the temperature range for which the
tunnelling regime is prominent.

The self-acceleration parameter a is expected to be proportional to the mean-field inter-
action parameter on the basis of both experimental (see above) and theoretical results [18,21].

Under permanent irradiation (of appropriate wavelength), photoexcitation occurs, which
is responsible for the LIESST effect. The photoexcitation term is proportional to the number of
molecules in the LS state, i.e. available for the photoexcitation process. A constant, single-site
excitation rate, such that one absorbed photon drives exactly one spin-crossover unit into the
excited state, is assumed. The excitation term can be expressed as(

dnhs
dt

)
exc

= (1 − nhs)I0σ (5)

where I0 is the intensity of the irradiation and σ is a constant accounting for the number
and cross section of the spin-crossover molecules†. The master equation which governs the
evolution of the system accounts for both processes, and is written here as

dnhs
dt

= (1 − nhs)I0σ − nhsk∞ exp

(
−Ea(0)
kBT

)
exp(−αnhs). (6)

In this equation, the reverse relaxation, i.e. LS → HS, has not been accounted for because
at the temperatures considered the corresponding probability is very weak.

The steady state of the system is such that dnhs/dt = 0. Thus equation (6) can be
expressed as

(1 − nhs)I0σ = nhsk∞ exp

(
−Ea(0)
kBT

)
exp(−αnhs). (7)

This is the state equation of the photostationary states of the system. A useful concept is that
of the ‘photoinduced equilibrium temperature’, which can be expressed as

kBT
∗
equil = Ea(1/2)

ln(k∞/[I0σ ])
. (8)

The non-linear character of equation (7), due to the self-accelerated relaxation, is
responsible for the occurrence of instability, for α(T ∗

equil) > 4 [4, 5]. We show in figure 1
the S-shaped curve associated with the light-induced instability of the steady states of the
one-sublattice system. The thermal hysteresis associated with this S-shaped curve has been
called light-induced thermal hysteresis (LITH) [3].

3. The two-sublattice extension

Extension of equations (6), (7) to the two-sublattice case requires a convenient expression for
the cooperative terms. It is worth recalling that the self-acceleration parameter a is associated
with the interaction strength. The Ising-like mean-field model used in [13, 14] is perfectly
suited to describe this effect, since it provides an energy gap between the two states which
varies linearly with the high-spin fraction:

�(nhs) = �(0)− 4Jnhs. (9)

This is consistent with a barrier energy that is linearly dependent on the high-spin fraction, as
introduced in [17], and finally provides a linear relationship between J and a. Indeed, the first

† It is worth noting that the assumption of a linear, single-site character for the photoexcitation process has recently
been challenged by the emergence of two counter-examples: the complex [FeII(bt)(NCS)2]2(bpym) made of bi-iron
molecular units [22] and an experiment using an extremely intense laser beam [23], giving evidence for the so-called
domino effect.
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Figure 1. Computed light-induced thermal hysteresis for a one-sublattice system (adapted from
[4]). The unstable states have been reported as a dotted line. The parameter values are as follows:
T ∗
equil = 75 K, I0σ/k∞ = 5.58 × 10−6, Ea(1/2) = 729 K, αT = 50 (open squares), 300 (open

circles), 600 K (full squares). Above the threshold value, hysteresis occurs.

direct experimental evidence for such a linear relationship was recently obtained from a study
of the diluted series [FeII

xCo1−x(btr)2(NCS)2]·H2O [24]. Thus, the self-acceleration parameter
can be expressed as

a = dEa(nhs)

dnhs
= dEa(nhs)

d�(nhs)

d�(nhs)

dnhs
= −4J

dEa(nhs)

d�(nhs)
(10)

and the self-acceleration factor as

α = a

kBT
= − 4J

kBT

dEa(nhs)

d�(nhs)
= γ J

T
(11)

where γ is a proportionality factor specific to the nature of the spin-crossover unit, irrespective
of the lattice site or sublattice to which it belongs.

For the system made of two structurally equivalent sublattices [13], the relevant interaction
parameters are

• J = Jintra > 0, intra-sublattice interaction;
• JAB = Jinter < 0, inter-sublattice interaction.

A negative sign for JAB is needed for the two-step transition [13]. It induces the relative
stabilization of the HS–LS state of the system (one sublattice HS, the other LS), which becomes
the stable state of the system at the plateau of the conversion curve nhs(T ). Accordingly, we
define the following two factors:

• a self-acceleration factor, α = γ J/T > 0, associated with the intra-sublattice (positive)
interaction;

• a self-deceleration factor, β = γ JAB/T < 0, associated with the inter-sublattice
(negative) interaction.

For each of the sublattices, these two effects merely add up within the expression of the
barrier energy, i.e. in the argument of the exponential factor of the relaxation rate. High-spin
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fractions also have to be defined for the two sublattices, n(A)hs , n
(B)
hs , and obviously their roles

in the self-acceleration and deceleration effects are interchanged for the two sublattices. On
the other hand, the photoexcitation effect is assumed to occur at a constant single-site rate,
irrespective of the sublattice. Following these simple mean-field assumptions, the master
equation is written as the following set of coupled differential equations:


dn(A)hs
dt

= (1 − n(A)hs )I0σ − n(A)hs k∞ exp

(
−Ea(0)
kBT

)
exp(−αn(A)hs − βn(B)hs )

dn(B)hs
dt

= (1 − n(B)hs )I0σ − n(B)hs k∞ exp

(
−Ea(0)
kBT

)
exp(−αn(B)hs − βn(A)hs ).

(12)

With simpler notation, detailed below, the coupled equations (12) appear as{
ẋ = k∞

[
p(1 − x)− xE exp(−αx − βy)]

ẏ = k∞
[
p(1 − y)− yE exp(−αy − βx)] (13)

with: x = n(A)hs , y = n(B)hs , ẋ = dx/dt , ẏ = dy/dt , p = I0σ/k∞, E = exp(−Ea(0)/kT ).
Formally, the coupled equations (13) are those of the Eulerian description of a compressible

and rotational fluid.
The photostationary states of the two-sublattice model are such that the velocity com-

ponents ẋ, ẏ are null. The coupled equations for the quasi-static (photostationary) solutions,
i.e. the state equations of the light-induced states, are{

p(1 − x) = xE exp(−αx − βy)
p(1 − y) = yE exp(−αy − βx). (14)

4. Results and discussion

4.1. The photostationary states

The resolution of the coupled set of equations (14), i.e. the search for x, y for given values
of the independent parameters p, E, α, β, is usually performed numerically. It may be worth
considering that these parameters derive from the independent physical quantities T , Ea(0),
γ J , γ JAB, I0σ/k∞, the first four of which are energetic quantities; the last one is dimensionless.
For the resolution of the master equation (13), time t is a further variable, and I0σ , k∞ are
independent parameters with the dimension of inverse time.

The maximum number of solutions of equations (14) may be determined by a graphical
investigation in the (x, y) plane. Equations (14) define two curves whose intercepts are required.
Interestingly, this method, elsewhere considered as the ‘nullcline method’ (see e.g. [25]), is
suitable for investigating the hydrodynamic problem associated with the multidimensional
equation (13).

The function y(x) associated with the first equation (14) can be expressed explicitly as

y = 1

β

[
ln

x

1 − x − αx + ln
E

p

]
(15)

y ′ = dy

dx
= 1

β

[
1

x(1 − x) − α
]

(16)

y ′′ = 1

β

[
1 − 2x

x2(1 − x)2
]
. (17)
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The functions y(x), y ′(x), y ′′(x) are defined and continuous for x ∈ ]0, 1[. The values
of E and p are necessarily positive, and β has been taken negative in the model. Then y(x)
has asymptotic branches y → ∞ for x → 0 and y → −∞ for x → 1. For α = 0, y(x) is a
monotonic decreasing function which does not provide hysteresis. It possesses an inflection
point at x = 1/2, with a slope which becomes positive for α > 4. The resulting instability,
quoted in [4], is clearly associated with the S-shaped character of the curve. The branch with
positive slope corresponds to an unstable state of sublattice A (for a frozen sublattice B, i.e. at
fixed y).

The function x(y) associated with the second equation (14) has identical properties
(interchanging x, y). Typical curves are reported in figure 2 and clearly show that the
problem may have up to nine solutions, with one or three symmetrical solutions (x = y)

and eventually two or three symmetric pairs of asymmetric solutions (x �= y), according to
the parameter values.
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Figure 2. Graphical determination of the steady states, using the curves y(x), x(y), associated
with equations (14) (full line and dashed line for the first and second equation, respectively). The
temperature values are (a) far below the LITH loop, (b) in the first part of the LITH loop, (c) at
the light-induced equilibrium temperature, (d) at the bifurcation point of the heating branch (B↑).
The same notation is also used in the next figure. The other parameter values are as follows:
p = 5.58 × 10−6, Ea(1/2) = 729 K, αT = 275 K, βT = −10 K. Full and open symbols circles
indicate stable and unstable solutions, respectively.

The problem now is that of determining the stability of these solutions. It may be resolved
by the numerical method of flow diagrams in the (x, y) plane. The method consists in
calculating, using the master equations, a large number of trajectories in the parameter space
(x(t), y(t)). Here we bypass this onerous task using the nullclines method, i.e. taking advantage
of the direct knowledge of the sign of the velocity components ẋ, ẏ, given by equations (13).
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This can be followed in figure 2. Indeed, since β < 0, ẋ(x, y) is a decreasing function of y,
i.e. it is positive below the curve y(x) and negative above this curve. Similarly, ẏ(x, y) is a
decreasing function of x, i.e. ẏ is positive on the left-hand side of the curve x(y) and negative
on the right-hand side of this curve. The knowledge of these signs enables us to determine
whether the solutions associated with the intercepts of the B curves, as shown in figure 3, have
stable or unstable character. In this way, we have obtained the simple rule that any reversed
branch of the S-shaped curves (or combination thereof ) in the (x, y) plane necessarily leads
to instability. This is a simple two-dimensional extension of the usual instability criterion for
the (n, T ) plane.

0
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Y

X

Figure 3. Investigation of the stability of the steady-state solutions, for the situation shown in
figure 2(b). The signs of the velocity components have been determined as explained in the text.
The resulting stability or instability of the character of the solutions is indicated by full and open
circles, respectively.

4.2. The photostationary light-induced thermal hysteresis loops

In the present section we analyse the behaviour of the two-sublattice system under permanent
irradiation, subjected to extremely slow temperature variations, such that the state equations
of the photostationary states can be used. A typical set of nhs-curves is shown in figure 4.
Whether the solutions have stable or unstable character has been determined as explained
in the previous section. For clarity, we have reported the average high-spin fraction of the
two sublattices (figure 4(a)) and the high-spin fraction for each sublattice (figure 4(b)). The
symmetrical solutions are identical to those for the one-sublattice system, shown earlier in
figure 1, with the typical S-shaped thermal curve, and unstable states occur around the light-
induced equilibrium temperature.

The novelty of the two-sublattice system is provided by the non-symmetric solutions which
appear in a limited temperature range around the light-induced equilibrium temperature, shown
in figure 4(b). According to the previous section, the solutions obtained at a given temperature
for each sublattice have to be combined so as to form two or three symmetric pairs of asymmetric
solutions. These are indicated in the figure. It can be seen that, on increasing temperature, the
asymmetric solutions reach a collapse point (B↑), called a ‘bifurcation point’, on the branch
of the symmetric solution. Beyond B↑ the states of the symmetric branch are unstable. By
the instability criterion, the [B↑/↓,S↑/↓

S ] part of the curve is unstable. The stable asymmetric
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Figure 4. The set of steady-state solutions, at constant intensity, plotted as nhs(T ) curves. The
computed data are reported averaged (a) or separately (b) for the sublattices. The stable and
unstable branches are shown as full and dotted lines, respectively. In (b), the asymmetric solutions
are obtained as pairs of curves, associated as shown by lines of same symbols. The unstable
asymmetric solutions collapse at the bifurcation points (B↑, B↓). Accordingly, the symmetric
branches are no longer stable beyond these bifurcation points.

branch goes through the instability point and is limited by asymmetric spinodal points (S↑
AS

and S↓
AS). We show in the next section how the instability at the light-induced equilibrium can

be ‘resolved’ thanks to the symmetry breaking of the system.

4.3. The occurrence of the light-induced symmetry breaking

We again consider here the quasi-static states, i.e. the solutions of the steady-state equations
(14). The thermal variation of the average high-spin fraction is deduced, in principle, by
following the stable states by continuity. However, at the bifurcation points, the system which
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leaves a stable state ‘has to choose’ between two stable states. The actual pathway of the
system can be determined by using the flow diagram method, in the simple analytical form
used in a previous section, and the result is that the system does indeed go to the asymmetric
state, i.e. follows the intermediate branch; see figure 5. It follows that the complete LITH loop
splits into two parts. The middle part of the asymmetric solution branch, i.e. in the [TB↓ , TB↑ ]
temperature range, is only accessible by a reversal of the temperature variation; in other words
it belongs to a minor hysteresis loop.
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S↑
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Figure 5. The pathway along the LITH loop, reported as thick lines. Beyond the bifurcation
points (B↑, B↓), the spontaneous symmetry breaking may occur via vanishingly small additional
asymmetries.

One may wonder how the light-induced symmetry breaking occurs. As for any disorder–
order transformation, it has to be triggered by tiny perturbations, e.g. thermal fluctuations or
merely by the discontinuous character of the photon flux. In the present continuous mean-field
model, a small asymmetry added to any parameter involved in the master equation is sufficient
to trigger the symmetry breaking.

We have computed the steady states, for several values of the inter-sublattice interaction
parameter γ JAB. The parameter values have been chosen so as to provide identical symmetric
solutions, with γ J + γ JAB = constant. The data are reported in figure 6 and show that the
larger γ JAB, the wider the asymmetric branch, with the larger distance between the bifurcation
point (B↑/↓) and the spinodal point (S↑/↓

S ) of the symmetric branch. In the particular case of
uncoupled sublattices (JAB = 0), B and SS coincide, so the asymmetric branch cannot be
reached by usual (macroscopic) means.

4.4. The comparison to the metamagnetic transition

The comparison with magnetic systems is now briefly described. The competition between
interactions of opposite signs, i.e. between ferromagnetic and antiferromagnetic ones, may lead
to the ‘metamagnetic’ transition [26] which is the transformation from an antiferromagnetic
state into a ferromagnetic state under the effect of an external magnetic field. The symmetry
between the structurally equivalent sublattices is restored by the application of the field. In
the Ising-like system considered here, the concept of a temperature-dependent field, due
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Figure 6. LITH loops, computed for different values (in K) of the coupling parameters:
(αT , βT ) = (275, 0), (280,−5), (285,−10). The other parameter values are those of figures
2 to 5. Unstable solutions are shown as dotted lines. The values of βT are 0 K, −5 K, and −10 K
for squares, triangles, and rhombuses respectively.

to Doniach [27], is useful: the two-level system with different degeneracies (‘Ising-like’)
is equivalent to a two-level system with equal degeneracies (‘pure Ising’) subjected to the
temperature-dependent field:

�(T , nhs) = �(0)− 4Jnhs − kBT ln
ghs

gls
. (18)

Let us discuss first the static transition: at the equilibrium temperature, the effective field
�(Tequil, nhs = 1/2) vanishes, and the state of the system, mostly in the HS–LS state, is
analogous to the antiferromagnetic state. When temperature is shifted on either side of Tequil ,
the effective field arises and induces the transition to the HS state (on increasing temperature) or
to the LS state (on decreasing temperature). This is analogous to the metamagnetic transition,
but occurs on each side of the equilibrium temperature.

The analogy holds also for the light-induced transition. The one-sublattice expression (7)
for the steady state of the system should be transformed to the following form:

1 − nhs
nhs

= exp

[
− 1

kBT

(
Ea(0) + anhs − kBT ln

k∞
I0σ

)]
= exp

[
−�

∗(T , nhs)
kBT

]
. (19)

Equation (19) introduces the concept of a light-induced effective field �∗(T , nhs), which is
temperature dependent, and which cancels at the light-induced equilibrium temperature and
includes the interaction terms. With k∞ � I0σ , the effect is analogous to that of the static
effective field, given by equation (18), except for the interchange between the HS and LS states.

4.5. Kinetic effects

We now consider the effects of the finite kinetics, dT/dt �= 0, necessarily involved in any
experiment. The equations governing the evolution of the system are the set of coupled
differential equations (13), which have to be solved numerically, using the Runge–Kutta
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methods. We did not perform an extensive study of these kinetic effects; instead we restrict
our analysis to the case of slow kinetics, to investigate small departures from the steady states
investigated in the previous sections. For example, the hysteresis loops no longer have sharp
edges, and the low-temperature edge is more disturbed than the high-temperature one [21].
The most interesting feature here is the symmetry breaking: since it obviously requires the
introduction of a (vanishingly small) asymmetrization of the parameter values, we have slightly
modified the energy gaps and thus obtained the curves reported in figure 7. At the slowest
temperature sweep rate, the pathway is very close to that of the steady states, shown in figure 5;
the conclusions derived from figure 5 are thus supported.
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Figure 7. Kinetic effects on the LITH loop, computed for several values of the temperature sweep
rate, using the set of master equations (13). The parameter values are those of figures 2 to 5, with
a tiny additional asymmetry of the energy gaps. The stable quasi-static branches (steady states)
are shown for comparison (vertical arrows). The temperature sweeping rates in reduced units
(10−8 k∞ K s−1) are as follows: 0 (lines), 25 (crosses), 50 (solid squares), 125 (triangles), and
250 (rhombuses). For the rate 250, the low-temperature branch is more affected (the double step
disappears) than the high-temperature branch.

It appears that the split character of the LITH disappears at high sweep rates, in the cooling
mode, and is strongly reduced in the heating mode. Interestingly, similar kinetic effects are to
be expected at the static transition, since the symmetry breaking requires the onset of (negative)
correlations, i.e. takes time.

5. Conclusions

The phenomenological macroscopic model of light-induced effects in cooperative spin-
crossover solids has been extended to the case of a two-sublattice system containing
anti-cooperative inter-sublattice interactions. The calculated light-induced properties are
reminiscent of the well-known static properties, with the typical double-step transition. The
possible light-induced symmetry breaking of the system is a fascinating feature which should
stimulate experimental work on these peculiar spin-crossover solids. Accurate structural
determinations are needed before an experimental case can be properly documented.



9406 C Parreira et al

Acknowledgments

This work was supported by the European Community: TMR (contract ‘TOSS’ ERB-FMRX-
CT98-0199) and the Socrates programme (CE was on a Socrates grant).

References

[1] König E, Ritter G and Kulshreshtha S K 1985 Chem. Rev. 85 219
[2] Gütlich P, Hauser A and Spiering H 1994 Angew. Chem. Int. Edn Engl. 33 2024
[3] Letard J F, Guionneau P, Rabardel L, Howard J A K, Goeta A E, Chasseau D and Kahn O 1998 Inorg. Chem.

37 4432
[4] Desaix A, Roubeau O, Jeftic J, Haasnoot J G, Boukheddaden K, Codjovi E, Linarès J, Nogués M and Varret F

1998 Eur. Phys. J. B 6 183
[5] Varret F, Boukheddaden K, Jeftic J and Roubeau O 1999 Proc. ICMM’98 (Seignosse, France); Mol. Cryst. Liq.

Cryst. 335 561
[6] Hauser A 1997 J. Phys. Chem. Solids 59 265
[7] Real J A, Bolvin H, Bousseksou A, Dworkin A, Kahn O, Varret F and Zarembowitch J 1992 J. Am. Chem. Soc.

114 4650
[8] Bousseksou A, Varret F and Nasser J 1993 J. Physique I 3 1463
[9] Real J A, Castro J, Bousseksou A, Verdaguer M, Burriel R, Castro M, Linarès J and Varret F 1997 Inorg. Chem.

36 455
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